Survey on categorical data for neural networks
نویسندگان
چکیده
منابع مشابه
Neural learning for distributions on categorical data
F.X. Albizuri, A.I. Gonzalez, M. Graña, A. d’Anjou University of the Basque Country Informatika Fakultatea, P.K. 649, 20080 Donostia, Spain E-mail: [email protected]; Fax: + 34 943 219306 Abstract. In this paper we define a Boltzmann machine for modelling probability distributions on categorical data, that is, distributions on a set of variables with a finite discrete range. The distribution m...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملSurvey on Clustering Algorithm and Similarity Measure for Categorical Data
Learning is the process of generating useful information from a huge volume of data. Learning can be either supervised learning (e.g. classification) or unsupervised learning (e.g. Clustering) Clustering is the process of grouping a set of physical objects into classes of similar object. Objects in real world consist of both numerical and categorical data. Categorical data are not analyzed as n...
متن کاملCategorical Missing Data Imputation Using Fuzzy Neural Networks with Numerical and Categorical Inputs
There are many situations where input feature vectors are incomplete and methods to tackle the problem have been studied for a long time. A commonly used procedure is to replace each missing value with an imputation. This paper presents a method to perform categorical missing data imputation from numerical and categorical variables. The imputations are based on Simpson’s fuzzy min-max neural ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Big Data
سال: 2020
ISSN: 2196-1115
DOI: 10.1186/s40537-020-00305-w